Explicit Formulas for Some Generalized Polynomials
نویسندگان
چکیده
منابع مشابه
Explicit formulas for the generalized Hermite polynomials in superspace
We provide explicit formulas for the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherlandmodel with harmonic confinement, i.e., the generalized Hermite (or Hi-Jack) polynomials in superspace. The construction relies on the triangular action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamilto...
متن کاملSome Explicit Biorthogonal Polynomials
Let α > 0 and ψ (x) = x. Let Sn,α be a polynomial of degree n determined by the biorthogonality conditions Z 1 0 Sn,αψ j = 0, j = 0, 1, . . . , n− 1. We explicitly determine Sn,α and discuss some other properties, including their zero distribution. We also discuss their relation to the Sidi polynomials. §
متن کاملSome Generalized Fibonacci Polynomials
We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and rLucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.
متن کاملSeveral Explicit and Recursive Formulas for the Generalized Motzkin Numbers
In the paper, the authors find two explicit formulas and recover a recursive formula for the generalized Motzkin numbers. Consequently, the authors deduce two explicit formulas and a recursive formula for the Motzkin numbers, the Catalan numbers, and the restricted hexagonal numbers respectively.
متن کاملTwo explicit formulas for the generalized Motzkin numbers
In the paper, by the Faà di Bruno formula, the authors establish two explicit formulas for the Motzkin numbers, the generalized Motzkin numbers, and the restricted hexagonal numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics & Information Sciences
سال: 2013
ISSN: 1935-0090,2325-0399
DOI: 10.12785/amis/070550